
Encryption with
DB2 Field Procedures

 in IBM i 7.1

Agenda

Presenter:

 Bob Luebbe – Chief Architect for Linoma Software

Agenda:

 Data Risks and Trends

 Traditional methods for field (column) encryption

 Introduction to DB2 Field Procedures (FieldProcs)

 How FieldProcs work

 How to get started with FieldProcs

 Potential "gotchas" with FieldProcs

 Performance considerations

 FieldProc program source example

 Feel free to ask any questions

Data Risks

Unless otherwise protected, all data
transfers travel openly over the Internet
and can be monitored or read by others.

Databases can be accessed
through a wide variety of tools by
both external hackers and rogue
employees.

Backup media often passes through
many hands to reach its off-site
storage location.

Costs of Losing Data

 Cost of a Data Breach study conducted by the Ponemon Institute

 33,000 lost customer records per incident

 Average cost is now $214 for each lost record

 $7.2 million average organizational cost per breach

 Costs: Administrative and IT labor, Notifications to customers, Public relations,
 Regaining trust, Lost business

0

1

2

3

4

5

6

7

8

2006 2007 2008 2009 2010

$
M

ill
io

ns
 o

f U
S

 D
ol

la
rs

Average Cost per Data Breach

Data Which Needs a High Level of Protection

 Anything that is confidential to the organization,
its employees and its customers

 Credit card numbers

 Personal Identifiable Information (e.g. Social security numbers)

 PIN numbers

 Payroll information (e.g. wages)

 Health-related information (PHI)

 Bank Account numbers

 Driver License numbers

 Financial data

 Trade Secrets (e.g. product formulas)

 To comply with regulations:

• HIPAA

• Sarbanes Oxley

• Gramm-Leach-Bliley Act

• State privacy laws

 To avoid potential penalties and lawsuits

 To comply with PCI Security Standards

 To avoid bad public relations

 To ensure your continued employment (you don’t want to be the one that “takes the fall”)

Why Should You Protect This Data?

“The personal information of 13,000 individuals who had
filed compensation claims with BP after last year's Gulf of
Mexico oil spill may have been compromised...

Numerous encryption technologies are available these days
to mitigate the risks involved in the loss of a computer or
other device, but many companies still don't use them.”

(Source: ComputerWorld, March 2011)

Encryption Basics

 Encryption is the process of transforming plain text into

cipher text (understandable text becomes unintelligible)
- Before: 4600636500982212

- After: dËKä°BBYý�\åê·Ñ®

 Encryption hides the meaning of the message,
but not its existence

 AES is the most popular encryption Cipher.
- Approved by NIST

- No known attacks

- Fast form of Encryption – 6 times faster than Triple DES

- Uses symmetric keys

- Key lengths can be 128, 192 or 256 bits

TERMS

AES is the abbreviation for Advanced
Encryption Standard. AES utilizes
symmetric key cryptology. It provides
strong encryption and is approved by the
U.S. Government for protecting top
secret information.

Cipher is a pair of algorithms that
perform encryption and decryption.

NIST is the abbreviation for National
Institute of Standards and Technology.
Is a federal technology agency that
develops and promotes standards and
technology.

Encryption Projects

 IBM i shops are at many different stages in their encryption projects:

• Some have done research, but did not have the time to implement
• Some used IBM’s APIs and built their own custom solution
• Some used a 3rd party solution

 Compliance requirements (e.g. PCI) generally drive encryption projects

 Encryption projects have been usually limited to extremely sensitive fields like
 credit card numbers or social security numbers

 Many organizations are re-examining their initial encryption projects (looking for better
 key management, auditing, security controls, ease-of-use, etc.)

 Organizations would like to encrypt additional sensitive data such as birth dates, names,
 and other Personally Identifiable Information (PII) data.

Field Encryption Options (before IBM i 7.1)

 For field encryption on IBM i (prior to 7.1), you have two options:
• Use API calls to encrypt the data before writes and updates (requires program mods)
• Use column triggers to automatically encrypt data on writes and updates (much better)

 Still need to modify any application where data needs to be decrypted:

• Screens
• Reports
• Batch processes
• Queries

 For numeric fields, have to change database types to alphanumeric OR
 store the encrypted values in an external (shadow) file

 Could not encrypt date, time and timestamp field types

 What if you don’t have the source code or the time?

Field Procedures - Introduction

 Field Procedures (FieldProcs) available in IBM i 7.1

 Linoma has been working with FieldProcs since beta (early 2010)

 FieldProcs are “enabling” technology to simplify encryption projects

 Can minimize or eliminate any application changes

 Stores alternative “encoded” values for fields, so do not need to change your data

types, lengths or CCSIDs

 Can be used for a variety of other encoding and decoding schemes:
• Compression of large strings
• Normalization of text (41st Street becomes 41st st.)

 Supported for DDS-described physical files and SQL-defined tables

 FieldProcs allowed on multiple fields in a file

 Supported in multi-member files

 Field Procedures - Diagram

Adding and Removing Field Procedures

Adding a Field Procedure (registering)

 SQL syntax: ALTER TABLE library/filename

 ALTER COLUMN fieldname
 SET FIELDPROC proglib/program

 No other locks can be on the file while the ALTER statement runs

 Make sure you have *OBJALTER authority to the file, as well as *USE authority to
the FieldProc program

 Performs a mass encoding (encryption) of the field values

 May take some time – Submit to batch

Removing a Field Procedure

 SQL syntax: ALTER TABLE library/filename

 ALTER COLUMN fieldname
 DROP FIELDPROC

 Performs a mass decoding (decryption) of the field values

Encoded Values

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
 Data Field Buffer Buffer Field Column
 Field Type Length Length Position Usage Heading
 CMSSNO CHAR 9 9 43 Both Social Secur.

 Field text : Social Security number
 Coded Character Set Identifier : 37
 Field Procedure Name : CRRP008
 Field Procedure Library : CRYPTO

 This is the field length

that the application will
see, but the encoded

length may be different.

Shows the name of the
program that will be
called on the encode

and decode operations

 Encoded value can have a different type, length and CCSID than the original field

 Does not change the record format level id – Will not get level checks in programs

 DSPFFD example after adding a FieldProc:

View all FieldProcs on the system with the following SQL statement:
 SELECT * FROM QSYS2.SYSFIELDS
Each entry will show the file name, field name, type, length and FieldProc name

 Time taken (in seconds) to add FieldProcs to a file with 1,000,000 records

 Every time you add a new FieldProc to a file, it runs all the existing
FieldProcs on the file to decode and re-encode the values

 Best practice – Use a single ALTER TABLE statement to add all FieldProcs
to the file at once

 Performance – Adding Field Procedures

* Tests ran on a model 520. Results are dependent on the size of the IBM i hardware.

 Encode Events – Which call the FieldProc

 Native record-level updates and writes

 SQL Insert and Update statements

 Some CL Commands: CPYF, RGZPFM, STRDFU

 Query Processing
 e.g. Select SSNO, NAME where SSNO = ‘508773211’

 Encoded key values on the SETLL , SETGT, CHAIN, READE:
 e.g. SSNO CHAIN EMPMAST

 Triggers Processing (e.g. for before/after images)

* The FieldProc has no knowledge of what operation
(insert, update, etc.) caused the encode or decode event.

On = and <> comparisons
(by default) the search is

performed using the encoded
version of the search value.

* Query search behavior can be changed using the FIELDPROC_ENCODED_COMPARISON
setting in the QAQQINI query options file.

 Decode Events – Which call the FieldProc

 Native record-levels reads (READ, READE, SETLL, CHAIN, SETGT)

 SQL Select and Fetch
 e.g. Select SSNO, NAME where NAME = ‘BOB’

 Query Processing
 e.g. Select SSNO, NAME, CITY, STATE where SSNO > ‘508773211’

 Report writers

 File Transfer utilities (e.g. Client Access, Surveyor/400)

 Reading CL commands: DSPPFM, CPYF

 Trigger Processing (e.g. for before/after images)

On >, >=, <, <= comparisons
(by default) all of the existing
values in the FieldProc column

will be decoded first.

Could be big Performance Hit!

* Query search behavior can be changed using the FIELDPROC_ENCODED_COMPARISON
setting in the QAQQINI query options file.

FIELDPROC_ENCODED_COMPARISON

Specifies the amount of optimization that may be used when queried columns have attached field procedures .
*ALLOW_EQUAL is the default behavior.

*NONE – No optimization to remove field procedure decode option 4 or transformations to optimize field
procedure invocations is allowed. For example, the optimizer cannot transform fieldProc(4, column) = 'literal'
to column = fieldProc(0, 'literal'). This option is used when the field procedure is not deterministic.

*ALLOW_EQUAL – Optimization allowed for equal and not equal predicates, GROUP BY, and DISTINCT
processing. For example, the optimizer might choose to change the predicate fieldProc(4, column) = 'literal' to
column= fieldProc(0, 'literal') in order to facilitate index matching. This option is useful when the field procedure
is deterministic but no ordering can be determined based on the result of the field encoding.

*ALLOW_RANGE – Transformation allowed for MIN, MAX grouping functions, ORDER BY, and all predicates
except LIKE in addition to the transformations supported by *ALLOW_EQUAL. This option is useful when the
field procedure is deterministic and the encoded value implies ordering

*ALL – Transformation allowed for all predicates including LIKE, in addition to the transformations supported by
*ALLOW_RANGE.

 Query Options file QAQQINI

 Sorting on Keyed Logicals and Physicals

 It sorts by the encoded (encrypted) value on READs… not by the decoded (decrypted) value

 Example file layout for EMPMAST

 Field procedure is added to EMPID

 RPG Example of reading entire file

 Instead, use ORDER BY in an embedded SQL Select statement (if use default QAQQINI option)
 e.g. SELECT * FROM empmast ORDER BY empid

 Should not have problems with CHAINS or READEs

 * Read all the employees by employee id
C *LOVAL SETLL EMPMAST
C DOW NOT %EOF(EMPMAST)
C READ EMPMAST
C ENDDO

A R EMPREC
A EMPID 7 0 COLHDG(‘Employee id’)
A NAME 30 COLHDG(‘Employee Name')
A SSNO 9 COLHDG(‘Social Security Number')
A K EMPID

ALTER TABLE EMPMAST ALTER COLUMN EMPID SET FIELDPROC PRGLIB/CDRP008

Results not ordered:
 23233
 54332
11111

 CHGPF Problems

 CHGPF SRCFILE(…) will drop any FieldProcs on a file

 This would perform a mass decryption of the field values!!! WITHOUT WARNING!

 This is a known as an issue by IBM…

 Recommended to submit a request to eliminate this issue with CHGPF (either direct to IBM or

through the COMMON Requirement process)

 Alternative:

• Convert physical file DDS to SQL before using FieldProcs – Then you can use ALTER Table
to add, change or remove fields instead of CHGPF

• Linoma’s Surveyor/400tm or IBM’s i Navigator can help facilitate the conversion to SQL

 Stomping on Data

 If conditionally return masked values or blanks, then you may stomp on the data
on the subsequent update

 Example file layout for EMPMAST

 Field procedure is added to SSNO (to return authorized value; full, masked or none)

 RPG Maintenance Program - Example of Stomping over data

/FREE
 // Retrieve employee record
 CHAIN EMPID EMPMAST;

 // Prompt for changes to SSNO and NAME
 EXFMT DSP01;

 // Update employee record
 UPDATE EMPMAST;
/END-FREE

Decode is performed on
SSNO. Masked value of
*****1255 is returned.

A R EMPREC
A EMPID 7 0 COLHDG(‘Employee id’)
A NAME 30 COLHDG(‘Employee Name')
A SSNO 9 COLHDG(‘Social Security Number')
A K EMPID

ALTER TABLE EMPMAST ALTER COLUMN SSNO SET FIELDPROC PRGLIB/CDRP008

Name and masked Social Security
Number is shown on the screen.
User just presses enter without

making any changes.

Encode is performed on
the masked SSNO value.
Original value is replaced

with *****1255

IBM is working on a
PTF that will help
enable masking
logic in FieldProcs.

 Performance – Reading Records

 Test on reading 1,000,000 records:

 Test conducted using a READ statement in an ILE RPG program

* Tests ran on a model 520. Results are dependent on the size of the IBM i hardware.

 Performance – Inserting Records

 Test on inserting 1,000,000 records:

 Test conducted using a WRITE statement in an ILE RPG program

* Tests ran on a model 520. Results are dependent on the size of the IBM i hardware.

 Performance –Updating Records

 Tests ran on reading/updating 1,000,000 records

 Test conducted with a READ and UPDATE statement from an ILE RPG program

 On a record UPDATE, the FieldProc encode operation runs even if the
 field values did not change (unlike a column trigger)

* Tests ran on a model 520. Results are dependent on the size of the IBM i hardware.

 Field Procedure Programs

 The FieldProc program must be either written in-house or provided by a vendor (e.g. Linoma)

 FieldProc program criteria:
• Must be an ILE program
• Cannot be a Service Program, OPM *PGM or JAVA program
• Cannot contain any SQL statements
• Has to be capable of running in a thread (for RPG, specify THREAD(*SERIALIZE) in H spec)
• Cannot use ACTGRP(*NEW)

 FieldProc program needs 3 sets of logic to process the function code passed in by DB2:

 // When the FieldProc is added with the ALTER TABLE statement

If Function = 8;
 (logic to return the encoded value’s length, type and CCSID to DB2)

 // When the data needs to be encoded – primarily called on writes/updates
ElseIf Function = 0;
 (logic to encrypt the original value and return it to DB2)

// When the data needs to be decoded – primarily called on reads
ElseIf Function = 4;

(logic to decrypt the encoded value and return it to DB2)

H DFTACTGRP(*NO)
H CCSID(*CHAR:*JOBRUN)
H THREAD(*SERIALIZE)

 * Prototype for encrypt function
D encrypt Pr 16a
D input 16a value
D length 5s 0 value

 * Prototype for decrypt function
D decrypt Pr 16a
D input 16a value
D length 5s 0 value

 * Structure describing the parameter data type
D FieldDesc DS qualified
D sqlType 5i 0 SQL data type
D byteLen 10u 0 Length of parameter
D length 10u 0 length in characters
D precision 5i 0 precision if numeric
D scale 5i 0 scale if numeric
D CCSID 5u 0 ccsid
D allocLen 5u 0 allocated length
D reserved1 14a available for use

 FieldProc Program Example (page 1 of 4)

* Function code (0=Encode, 4=Decode, 8=Definition for create time)
D functionCode S 5i 0
 * Structure describing optional parameters
D optionalParms DS qualified
D listLen 10i 0 total length
D listCnt 10i 0 number of parms
D parmList 1a optional parms
* Decoded Data Description
D decodeDataDesc DS LikeDS(FieldDesc)
 * Decoded Data
D decodedData S 9
 * Encoded Data Description
D encodeDataDesc DS LikeDS(FieldDesc)
 * Encoded Data
D encodedData S 16
* Returned State for errors
D sqlState S 5a
 * Structure for communicating messages.
D messageText DS qualified
D msgTextLen 5i 0 Msg Length
D msgTextData 1000a Msg Text

* Entry parms
C *ENTRY PLIST
C PARM functionCode
C PARM optionalParms
C PARM decodeDataDesc
C PARM decodedData
C PARM encodeDataDesc
C PARM encodedData
C PARM sqlState
C PARM messageText

 FieldProc Program Example (page 2 of 4)

==
* MAINLINE *
==
/free

 // Handle function requested...
 Select;
 // ---
 // When ALTER TABLE or CREATE TABLE runs
 // ---
 When (functionCode = 8);
 // Make sure it is the correct type of Fixed-length character string
 If (decededDataDesc.sqlType <> 452 AND
 decededDataDesc.sqlType <> 453);
 sqlState = '38I02';
 messageText.msgTextData = 'Unexpected data type encountered.‘;
 messageText.msgTextLen = %len(%trim(messageText.msgTextData));
 Return;
 Else;
 // set the encoded Data Attributes
 encodeDataDesc.sqlType = 452; // Fixed-length
 encodeDataDesc.byteLen = 16; // Size in Bytes of encoded data
 encodeDataDesc.length = 16; // Size in Characters of encoded data
 encodeDataDesc.precision = 0; // precision of numeric parameter
 encodeDataDesc.scale = 0; // scale of numeric parameter
 encodeDataDesc.CCSID = 65535; // CCSID of encoded data
 encodeDataDesc.allocLen = 0; // Data length in Variable container
 Endif;

 FieldProc Program Example (page 3 of 4)

 // ---
 // Encode
 // ---
 When (functionCode = 0);

 // Encrypt the data
 encodedData = Encrypt(decodedData:9);

 // ---
 // Decode
 // ---
 When (functionCode = 4);

 // Decrypt the data
 decodedData = Decrypt(encodedData:16);

 // Error -- Unsupported option.
 Other;
 sqlState = '38I03';
 messageText.msgTextData = 'Unsupported option requested of ' + 'Field procedure FIELDPROC.';
 messageText.msgTextLen = %len(%trim(messageText.msgTextData));
 EndSl;

 // Normal termination.
 *inLR = *on;
 Return;
 /end-free

 FieldProc Program Example (page 4 of 4)

 FieldProc Program Example (page 4 of 4) FieldProc Masking (Beta PTF)

 New PTF (in beta) to allow the programmer to return an SQL state '09501' if its
determined that the encode is trying to replace a value with a Masked value.

 SQL state 09501 only affects Updates and Inserts through FieldProcs:

o For an Update operation, 09501 indicates to DB2 that the current value for the
column should be used.

o For an Insert operation, 09501 indicates to DB2 that the default value should be
used for the associated column value.

 FieldProc Program Example (page 4 of 4) FieldProc (Beta PTF)

 IBM has determined that at certain times they need to the full value returned from the FieldProc.
Not masked. One example of this is when they are doing Trigger Processing.

 The beta PTF is introducing a new FieldProc parameter (at the bottom of the *ENTRY PLIST).

 Layout of new parameter (Data Structure):
 D sqlExtraInfo DS qualified
 D sqlfpInfoLen 10i 0
 D sqlfpNoMask 1a
 D reserved 123a

 If a ‘1’ in provided in the sqlpNoMask field, then DB2 wants the full value returned.

 Since this is a new parameter that will be added at the bottom of the *ENTRY PLIST, and some

systems may not have the PTF installed yet, you can check for existence of the parameter sent
in using the %Parms function

 This should be implemented when using the new masking SQL return code of 09501.

 FieldProc Program Example (page 4 of 4) FieldProc Errors

 If you want to report an error back to the calling application, make sure to set the
SQLSTATE in your FieldProc before returning

 Valid SQLSTATES are in the 38xxx range

 DB2 will return a message with the id of CPF504D and text of “Field procedure error”.

 You can return additional text in the 2nd level message. Example:

 *LOVAL and *HIVAL

 Most RPG shops use *LOVAL SETLL to position to the beginning of a file and *HIVAL SETGT to
position to the end of a file

 DB2 will pass *LOVAL to your FieldProc as a string of hex 0s and *HIVAL as a string of hex Fs

 Do not encrypt those special hex values in your FieldProc, or else…

• DB2 may not position correctly when using *LOVAL or *HIVAL, since it would be trying to
position with the encrypted versions of *LOVAL or *HIVAL

• Subsequent READ/READP operations may not return all records (e.g. if 6 records in the
file, you may only get 4)

• Example of file contents

KEY HEX ENCODED
1 E7D8E95115267BC3EFBABEBF0F318875
2 D0D231AF065105B9FCAC6448143C75C1
3 D36E4FF5DADD020CB8836EDCE578C609
4 F1CC050A407B260D73FB0C9410DB16E8
5 A62292B1273E77A3E822C1BEFF13A8DC
6 D05D1712C41FDC47D53DF38A70CE2961

• Example results of SETGT *HIVAL and READP (if not handled properly):

 KEY

2
6
5

 Other Things to Know

 CRTDUPOBJ will duplicate any FieldProcs on the file

 CPYF will always decode the values on the “From” file. It will also encode the values
on the “To” file (if FieldProcs exist on the file)

 FieldProc runs in secondary thread. First time a FieldProc is called, it will use the job’s

library list. It will not recognize any additional changes to the library list for the job.

 Users must have authority to the FieldProc program
• They should have at least *USE authority to the FieldProc program OR
• Create the FieldProc program with USRPRF(*OWNER) and *EXCLUDE public

authority. However, this approach will circumvent any authority checks for masking.

 A FieldProc cannot adopt authority from your programs since it runs in a different thread

 If a user is not authorized to a FieldProc program, they will get message id CPF4236 with

the text of “Not authorized to open member X”.

 FieldProc programs should be “short running” to avoid timeouts. For instance, it is not
recommended to perform other file I/O operations in the FieldProc program.

 Make sure to back up FieldProc programs since they are not automatically backed up with
the file.

 IBM Encryption APIs

 If you want to do it yourself, start by looking at IBM’s APIs of Qc3EncryptData and Qc3DecryptData

 You can read about these APIs at:

 We use IBM’s encryption functions in our FieldProcs

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/apis/qc3encdt.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/apis/qc3decdt.htm

 Important Elements of a Good Encryption Solution

 Effective Key Management features to meet auditor and compliance requirements

 Stores the Keys securely in encrypted form

 Good security controls on who can create and manage Keys

 Allows only certain individuals to grant/revoke access to decrypted values

 Can restrict users to masked values

 Is easy to rotate Keys (for re-encrypting data)

 Has good audit trails (logs) and security alerts

 Doesn’t entrust too much control to a single person (dual control, separation of duties)

 Shouldn’t be too complex for implementation and on-going maintenance

“DB2 field procedure programs can be created by any
developer, but please be aware that it takes a deep
knowledge of encryption algorithms and best
practices to implement a secure encryption solution.”

Kent Milligan, IBM

 Field Procedures vs Column Triggers

Benefits of FieldProcs over Column Triggers:

 FieldProcs are faster than Triggers

 FieldProcs can modify data on Read operations – less (or no) program changes

 FieldProcs support the storage of the encrypted (encoded) values in the existing file

(this is great when needing to encrypt non-alpha field types)

Benefits of Column Triggers over FieldProcs:

 Column Triggers have been available since V5R1 (all the kinks have been worked out)

 Column Triggers only run when the field values change, which may provide better performance

Performance benefit of using APIs (for decryption) versus FieldProcs:

 You can choose when to decrypt the values within your applications. Maybe there are only certain
screens or reports where the decrypted values need to be shown.

 Summary

 Most shops are not on IBM i 7.1 yet… but some are planning to upgrade soon

 Make sure to get the latest PTFs from IBM before going live

 Still may have to make application changes to fix the sorting problem for keyed fields

 Test, test, test (FieldProcs is new technology):

• Test all applications that write/update the field
• Test all applications and queries that read the file
• Test performance

 Option if not on IBM i 7.1 : can use the column trigger approach to automate encryption

 Additional questions…

 Other Resources

 FieldProc article from Kent Milligan (Senior DB2 consultant for IBM):
 (Provides a good overview of FieldProcs, along with a FieldProc RPG source example)

 http://www.mcpressonline.com/database/db2/enable-transparent-encryption-with-db2-field-procedures.html

 IBM i Database SQL Programming Guide:
 (Details on FieldProcs, including parameter descriptions, recommendations)

 http://www-03.ibm.com/systems/i/software/db2/books.html

 IBM i Database Performance and Query Optimization Guide:
 (Indicates when encode/decode operations are ran by DB2, including information on how DB2 optimizes
 queries that include FieldProc columns. Also provides info on the QAQQINI option.)

 http://www-03.ibm.com/systems/i/software/db2/books.html

Web site: www.linomasoftware.com
E-mail: bluebbe@linoma.com

Toll-free: 1-800-949-4696
Direct: (402) 944-4242
Fax: (402) 944-4243

 How to contact us

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

