
Brian May
IBM i Modernization Specialist

Profound Logic Software

Webmaster and Coordinator
Young i Professionals

Overview
� Discuss advantages of using data structures for I/O

operations

� Review the I/O opcodes that support data structures

� Discuss the LIKEREC keyword and its abilities

� Discuss key data structures and how they are used

� Talk about local file support for subprocedures

� Discuss i 7.1 enhancement to finally allow use of long
alias names in RPG

What’s in it for me?

Avoid Some Common “Gotchas”

� Bad data in files causing Decimal Data Errors

� When reading in data from a file without data
structures, each field is set its value individually

� This all happens under the covers

� If there is corrupt data in your file, the program will receive
errors such as decimal data errors before your program regains
control to handle them

� Searching a table for corrupt data can be a real time sink if you
don’t know exactly what happened

Avoid Some Common “Gotchas”

� Bad data in tables causing Decimal Data Errors

� When reading data from a file with data structures, the
entire record is moved as a single entity

� This prevents the run time from “touching” each field
individually on input

� Your program can then monitor for possible bad data in fields
your program uses and handle them

� If you can catch these errors, you can easily log which row in
what table caused your problem so that you can review and fix
it

Avoid Some Common “Gotchas”

� Name collision

� When more than one table has columns with the same
name, a couple of different problems can arise.

� If the columns have different definitions, you can’t even
compile the program unless you rename them using PREFIX
or some other method

� If the columns have the same definition, your program will
compile normally, but you must be diligent to keep up with
your data and make sure you don’t accidentally replace data
unintentionally

Avoid Some Common “Gotchas”

� Name collision

� By using qualified data structures to receive your input,
names are now unique

� Since the different formats for the same column name
are now in separate qualified data structures, they are
unique and your program will compile easily

� By holding data in qualified data structures, there is no
risk of overwriting any data in columns with the same
name

Performance Enhancements
� For I/O intensive programs, using data structures can

improve performance

� Moving one large piece of data into a data structure is
much faster than moving each individual column,
especially for very long record formats

� Storage of commonly retrieved records in a data
structure array can improve performance in long
running programs

You are really going to need these

What is a QUALIFIED DS?
� Qualified data structures instruct the compiler to

require the data structure name whenever a subfield is
referenced

� Example: Customer.Email

� This qualified data structures can have subfields with
the same name as other fields without name collision

� Qualified data structures are required when using
certain data structure features, such as data structure
arrays

How to Create a Qualified DS
� QUALIFIED keyword

� Simplest way to make a qualified data structure

How to Create a Qualified DS
� QUALIFIED keyword

� Simplest way to make a qualified data structure

How to Create a Qualified DS
� LIKEDS keyword

� LIKEDS creates a data structure with the same subfields
as another data structure

� A data structure defined with LIKEDS is automatically
created as qualified

How to Create a Qualified DS
� LIKEDS keyword

� LIKEDS creates a data structure with the same subfields
as another data structure

� A data structure defined with LIKEDS is automatically
created as qualified

How to Create a Qualified DS
� LIKEREC keyword

� LIKEREC creates a datastructure with subfields
matching the column names and formats for a specified
record format

� A data structure defined with LIKEDS is automatically
created as qualified

How to Create a Qualified DS
� LIKEREC keyword

� LIKEREC creates a datastructure with subfields
matching the column names and formats for a specified
record format

� A data structure defined with LIKEDS is automatically
created as qualified

Using Qualified DSs
� All references to subfields must have the data structure

name, a period, and then the subfield name.

Using Qualified DSs
� EVAL-CORR operation

code

� Sets subfields with the
same name and
compatible data types
equal

� Saves monotonous code
to set each subfield
equal to its
corresponding field in
the other data structure

Using Qualified DSs
� EVAL-CORR operation

code

� Sets subfields with the
same name and
compatible data types
equal

� Saves monotonous code
to set each subfield
equal to its
corresponding field in
the other data structure

How do I make this stuff work?

Creating Data Structures
� The first thing you need when using data structures for I/O

is obviously some data structures
� Data structures can be defined using EXTNAME or LIKEREC

on the data structure definition specification

� LIKEREC creates a qualified data structure

� EXTNAME does not create a qualified data structure unless
you specify the QUALIFIED keyword

� All input operations (READ, CHAIN, READE, etc) require you
to define your data structure as *INPUT

� The WRITE operation requires a data structure of type
*OUTPUT

� The UPDATE operation can use either type of data structure

Creating Data Structures
� Even though UPDATE can be done with an *INPUT

data structure, I always use *OUTPUT

� I like the consistency

� I can easily check if my *INPUT and *OUTPUT data
structures are different before actually performing an
UPDATE

Creating Data Structures
� Even though UPDATE can be done with an *INPUT

data structure, I always use *OUTPUT

� I like the consistency

� I can easily check if my *INPUT and *OUTPUT data
structures are different before actually performing an
UPDATE

Creating Data Structures
� Another type of data structure that you may want to

have is a *KEY data structure

� These data structures only contain the key fields

� Subfields are ordered the same as the key

� Easily loaded using EVAL-CORR

Creating Data Structures
� Another type of data structure that you may want to

have is a *KEY data structure

� These data structures only contain the key fields

� Subfields are ordered the same as the key

� Easily loaded using EVAL-CORR

Retrieving Data
� Data structures can be used with any of the file input

opcodes
� READ

� READE

� READP

� READPE

� CHAIN

� READC

� All of these operations accept a data structure in the
Result Field position (in free format, they are the last
parameter)

Data Retrieval Examples

Data Retrieval Examples

Outputting Data
� Data structures can be used with either of the file

output opcodes

� WRITE

� UPDATE

� Both of these operations accept a data structure in the
Result Field position (in free format, they are the last
parameter)

Data Output Example

Data Output Example

Using %KDS
� %KDS() lets your data retrieval operation code know to treat the

data structure like a key list

� Can be used with data structures defined with EXTNAME or
LIKEREC with the *KEY option

� Can also be used with a data structure defined within the
program

� Can be used even when not using data structures to receive input

� More flexible than a KLIST
� No need to come out of free form to define it

� Only the types of the key fields must match

� Key fields with different lengths will be adjusted to fit automatically

� You can specify how many key fields to use instead of creating new
key lists

Hold on to your hats!

Putting It All Together
� Let’s say we have a header and detail table used for

purchase orders

� Order Header Table (ORDERHDR) with columns for

� Division

� OrderNum

� OrderDate

� VendorName

� Keyed by Division and OrderNum

Putting It All Together
� Order Detail Table (ORDERDTL) with columns for

� Division

� OrderNum

� Line

� ItemNum

� Price

� Quantity

� Keyed by Division, OrderNum, and Line

Putting It All Together
� For a very simple example, lets say we need a program

to go through an order and update the prices for each
order line

� Assume there is an existing subprocedure called
Get_Price that will handle the price look up

� To keep journals clean, the program should only update
the detail line if there is a change in the detail record

Putting It All Together

Putting It All Together

Putting It All Together

Walking Through the Example
� Naturally, we need to define our tables

� Then we will need our data structures

� An *INPUT and *KEY for the header

� An *INPUT, *OUTPUT, and *KEY for the detail

Walking Through the Example
� We need to prototype our Get_Price routine

� We also need parameters for this program

Walking Through the Example
� Now, let’s load our key data structure and retrieve our

order header

Walking Through the Example
� Since the column names are the same in both tables,

the program uses EVAL-CORR to load the detail key
with the header values

� Then a basic SETLL/READE/DOW combination to
loop through the detail records

Walking Through the Example
� The program moves the data from the *INPUT data

structure to the *OUTPUT data structure

� The program then calls the Get_Price subprocedure to
populate the PRICE column

Walking Through the Example
� Compare the *INPUT and *OUTPUT data structures

to determine if the price changed

� If so, update the record using the *OUTPUT data
structure

Walking Through the Example
� Read in the next row and continue the loop

� Close out our If %Found block

� End the program

Some of the new features of RPG REQUIRE you to use data
structures for your I/O

Local Files in Subprocedures
� One of the biggest additions to RPG in i6.1
� “F” specs are now allowed inside of subprocedures
� This will allow your subprocedures to have their own

individual cursor for a file
� Because “I” and “O” specs are not allowed in

subprocedures, all I/O operations must be done using data
structures

� Since all local storage is automatic by default, your file will
be closed when the subprocedure ends

� If you want the file to remain open after returning from the
subprocedure, the STATIC keyword is allowed on the file
specification

Qualified Record Formats
� As of i 6.1, the QUALIFIED keyword is allowed on file

specifications

� This requires that all references to record format
names must be qualified by the file name

� This is an alternative to using the RENAME keyword
when you have more than one file with the same
record format name

� If a file is QUALIFIED, no “I” or “O” specs are
generated by the compiler

� All I/O operations on qualified files must be done
using data structures

Long Column Names
� DDS, through the ALIAS keyword, and SQL have both had the

ability to have long column names for years

� Until i 7.1, these more descriptive names were not usable in RPG
and many shops stayed with their 10 character naming

� The reason that RPG has been limited on column name length
has always been the “I” spec and it’s fixed format roots

� Since “I” specs are bypassed when using data structures for I/O,
it is now possible to use the longer names

� When the ALIAS keyword is specified on the file spec, data
structures using LIKEREC will have the longer alias names for
subfields

� When using externally defined data structures, the ALIAS
keyword is used on the data structure definition

About the Presenter

Brian May is an IBM i Modernization Specialist for Profound
Logic Software. He is also webmaster and coordinator for the
Young i Professionals (http://www.youngiprofessionals.com).
He is a husband and father of two beautiful girls. Brian can be
reached at bmay@profoundlogic.com.

